quantGenius Manual

internal version, available only within NIB network

(last update 2-Feb-17)

1. Preface

Quantitative PCR (qPCR) is considered the golden standard molecular method for the quantification of nucleic acids. Due to several factors that can influence the final result, quantitative analysis and interpretation of qPCR data is not trivial. We have developed "quantGenius" (http://quantgenius.nib.si), a web-based tool for robust quantification of qPCR data using standard curve. It is designed as a workflow that guides the user through quality control and calculation steps. It deals with all the issues of qPCR related calculations from data consistency, pipetting errors, standard curve parameters, individual sample efficiencies/inhibition, range of quantification and normalization to one or several reference genes. In this way it enables robust quality controlled quantification of nucleic acids (Figure 1).

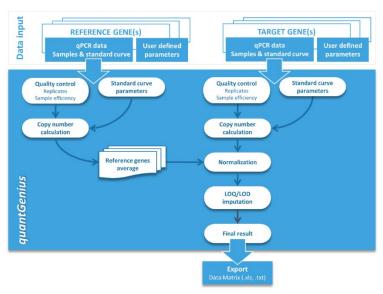


Figure 1: Simplified quantGenius workflow

2. Registration and login

quantGenius (previously known as qPCR calculator) is a web-based application, available within the NIB network. To access qPCRcalculator open your favourite browser (e.g. Internet Explorer, Firefox, Chrome...), and write http://stork/qpcrcalc2/ or select it from the list of available applications on IBIS2 http://ibis2.nib.si/.

"User identification" screen opens when you access the quantGenius page. **Registration is needed to store** your data and reanalyse it at later time. Click on "Register" (top right on the screen) and enter your preferred username and your real name and surname, a valid email and your organization (see example

figure below). Click "Register" (bottom right) to confirm (Figure 2). To login just write your username and password.

Figure 2: Registration window

3. Adding new experiments

After you login you are in the "Experiments page" where you can edit or delete already analysed experiments (listed in a table, Figure 3).

In the INTERNAL version, the users can view all the experiments that were created within the NIB network, but can only modify their own experiments. Use the "clone" option (explained below) to reanalyse someone else's data.

To create new experiment analysis click on "Add experiment" button (bottom right; Figure 3). First you have to Name your experiment (use organism name/project name or similar) and click "Add". Your new experiment will now appear in the table. Click on the experiment name to open your experiment where you can add your reference and target genes results data.

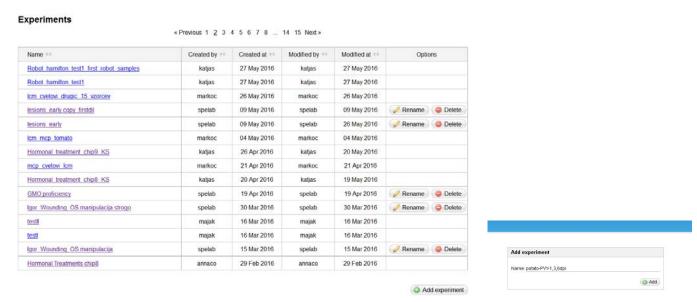


Figure 3: Experiment organization and addition

4. Adding a reference gene

For each experiment, at least one reference gene data must be added prior to any target gene data. Add a reference gene by clicking "Add reference gene" button (Figure 4).

Figure 4: Adding new genes

The "Add reference gene" page is divided into four subpages: 1. Gene info & data, 2. Parsed data, 3. Check Sample names & dilutions, 4. Quality control & Calculations.

Gene info & data: Choose the gene name from one of the options available in the drop-down menu (synchronized with the PimerDB) or write a custom name (not recommended) and then paste the sample data (Data) and standard curve data for the analysed reference gene. The data can be copied from the raw export file from the qPCR machine software.

The input data format for the samples is:

sample name [tab] Cq value [tab] sample dilution relative copy numbers (Figure 5).

The input data format for the standard curve is:

Cq value [tab] dilution relative copy numbers (Figure 5).

Sample naming: it is highly recommended to use Unique sample IDs to name your samples as this will enable easier further analysis workflow. For the high throughput studies sample naming follow the guidelines set in O:\DEJAVNOSTI\OMIKE\protokoli\Organisation\02ORG Pos01 Integrative-analysis-organisation v1.docx. If using two dilutions you should give the same sample names for both dilutions.

Dilutions: organize your data in a way that less diluted reactions are preceding more diluted reactions (e.g. 10-fold dilution before 100-fold dilution).

Pipetting errors: Do not correct or remove any wrongly pipetted reactions at this stage (or any previous manipulation of qPCR results data)!

Standard curve: should include at least 4—serial dilutions with at least 3 replicates each (see Svec at al., BDQ 2015, for details). If the same standard curve is used on different plates, the calculated copy numbers are comparable across plates, eliminating the need for any additional interpolate calibration.

Undetermined reactions: the quantGenius recognizes "Undetermined", "Failed" or empty field as failed PCR amplification. If your qPCR platform gives different outputs (Eg. 40), it is best to delete the values, as only in this way they will be appropriately recognised and LOD imputation can be implemented (see below).

BioMark (Fluidigm) data: For easier analysis of BioMark (Fluidigm) results, use the **Fluidigm data prep** tool that will convert the standard machine-output file into format, suitable for copy-pasting to the quantGenius. The tool is accessible from the quantGenius homepage window or at http://quantGenius.nib.si/fluidigm/.

Click "Next" (bottom right) to proceed.

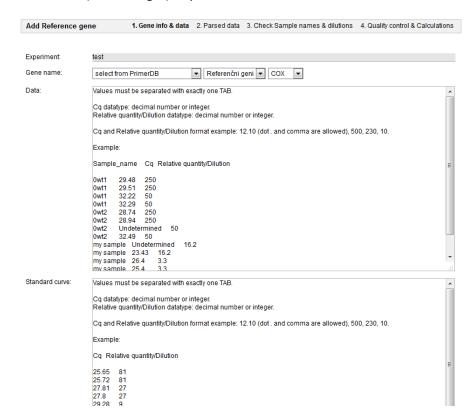


Figure 5: Data import

After importing the data, **Parsed data** page serves as a check-point to review if all data was correctly read by the application (Figure 6). The lines that will not be used for analysis are marked with \bigcirc in the "Accepted" field and the lines identified as appropriately formatted data are marked with \bigcirc and have a green background colour. If you are pleased with what you see, proceed by clicking "Next" at the bottom of the page (scroll down). If the parsing was incorrect click "Back" and correct the data format according to instructions above (hint: very common "mistake" is that you have different sample names for the two dilutions) (Figure 6).

Figure 6: Format checking of the imported data

Reference Sample names & dilutions subpage lets you check if all reference genes added to the experiment have the same sample names and same sample number (Figure 7). Proceed by clicking "Next" (bottom right).

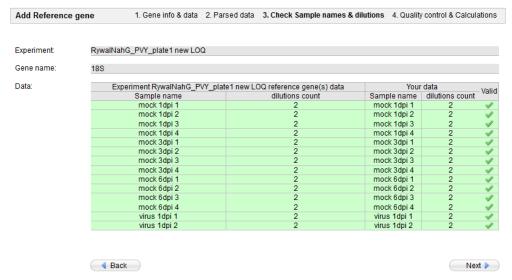


Figure 7: Consistency checking of the imported data: sample names and dilutions agreement between the imported reference genes

On **Quality control & Calculations** subpage you specify the "Extraction quality control (CqExtC)" which is the maximum Cq value that is considered OK for your reference gene (default 34, see note below). You can also define allowed sample slope ranges ('Slope between', default between -3.8 and -3) and slope difference between your sample and standard curve (default 0.5; Figure 8).

Figure 8: Definition of quality control parameters

CqExtC: CqExtC lets you specify the limit of the RNA in the reaction to achieve optimal results and is not to be mixed with CqLOQ (explained below). The Cq values of your samples can be higher than CqExtC because RNA isolation yield of the sample was too low, reverse transcription has gone wrong or the sample is too much diluted. The wells with Cq values higher than CqExtC will not be used for calculations for any of the target genes. By default CqExtC is set to 34, which rarely affects quantification. For well-expressed reference genes it is recommended to set this control to 28.

Slope between and **Slope difference**: Ideally, if PCR reaction is 100% efficient, the slope between dilutions is -3.3, which in real life is not always the case. That is why we are allowing the slopes of our samples to be between -3.8 and -3 (83-115% efficiency). The thresholds can be changed but keep in mind that by widening the range you are increase measurement uncertainty/precision. The same goes for slope. To assure accurate quantification, the slope of the sample should not be more than 0.5 units different from the slope of the standard curve.

5. Reviewing reference gene data

After the conditions are entered the application automatically calculates all parameters of the standard curve and the sample reference gene copy numbers. In the standard curve table, you can check the calculated partial slopes. On the right you should check table with dilution curve slope, correlation coefficient and intercept that are used for calculation of gene copy numbers. For each calculated number you can see its formula by clicking on the header column (Figure 9).

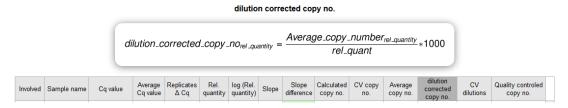


Figure 9: Calculated data table header with the formula of one of the columns shown

All the data that are out of the preset boundaries is highlighted to assess the data quality and help with manual corrections (Figure 10):

Standard curve:

- Replicates ΔCq > 0.5,
- Slope out in the predefined range ("Slope between")
- Correlation coefficient < 0.98

Data

- Average Cq Value > CqExtcC
- Replicates $\Delta Cq > 0.5$,
- Slope out in the predefined range ("Slope between")
- Slope difference > predefined Slope difference
- CV copy number > 30

You can use the checkmarks in the "Involve" column of the tables to remove values (individual wells) where errors occurred during pipetting both in the Standard curve results as well as in Data results (Figure 10). You can also remove the dilutions of the standard curve where Cq values are out of the linear amplification range.

Standard curve:										
	Involved	Cq value	Rel. quantity	Cq	Replicates A Cq	Rel. quantity	log (Rel. guantity)	Partial slope	Slope:	-3.45782
	V	20.55679	10000	20.55679	0.15	10000	4	-3.796	Inverse slope:	-0.28863
	V	20.704414		20.704414		10000	4		Correlation cofficient (rsq):	
		24.376608		24.376608	0.1	1000	3	-3.0309	Intercept:	9.98011
		24.476524		24.476524		1000	3			
	7	27.449476		27.449478		100	2	-3.689		
	V	27.465395		27.465395		100	2			
		31.081541		31.081541		10	1	1		
				31.211237		10	1			
	V	31.211237	10							

Involved	Sample name	Cq value	Average Cq value	Replicates & Cq	Rel. quantity	log (Rel. quantity)	Slope	Slope difference	Calculated copy no.	CV copy no.	Average copy no.	dilution corrected copy no.	CV dilutions	Quality controled copy no.
V	R3H5	23.882208			1000	3			1221.27					
V	R3H5	27.190796	27.2124	0.04	100	2			135.47	2.03	133.55	13.35		13.35
V	R3H5	27.23404			100	2			131.63					
V	R6H2	24.636354	24.6857	0.1	1000	3	-3.3112	0.15	739.84	4.64	716.34	7.16	7.17	7.16
V	R6H2	24.73512			1000	3			692.83					
V	R6H2	27.97427	27.9969	0.05	100	2			80.48	2.13	79.29	7.93		7.93
V	R6H2	28.019604			100	2			78.09					
V	R6H3	23.974873	24.0139	0.08	1000	3	-3.3544	0.1	1148.33	3.67	1119.3	11.19	5.19	11.19
V	R6H3	24.05292			1000	3			1090.28					
V	R6H3	27.316357	27.3683	0.1	100	2			124.62	4.88	120.47	12.05		12.05
V	R6H3	27.420155			100	2			116.31					
V	R6H4	23.986359	27.2413	6.51	1000	3	0.0709	3.53	1139.59	137.73	577.33	5.77	58.32	1 Explain
V	R6H4	30.496176			1000	3			15.06					
V	R6H4	26.952732	27.1703	0.44	100	2			158.69	20.31	138.76	13.88		1 Explain
V	R6H4	27.387918			100	2			118.83					
V	R6H4	23.986359	23.9864	ſ	1000		-3.184	0.27	1139.59	1	1139.59	11.4	13.88	11.4
	R6H4	30.496176			1000	3			I					
V	R6H4	26.952732	27.1703	0.44	100	2			158.69	20.31	138.76	13.88		13.88
V	R6H4	27.387918			100	2			118.83					

Figure 10: Reviewing reference gene data and removal of a pipetting error (encircled in red).

CAUTIONS

Data:

- Do not remove sample reactions that are out of linear range. These will be handled properly by the application itself!
- If you remove all replicates of one dilution, the sample efficiency quality control will not be implemented

For the reference gene, the following **quality control** checks/modifications are performed (see Figure 11 for details):

- If you have only one dilution, only CqExtC limit is checked. If the reference gene Cq is above CqExtC limit, it indicates that the extraction, reverse transcription or PCR reaction were not efficient enough and no quantification can be performed for this sample.
- In the case of two dilutions, after CqExtC, relative copy numbers are not calculated if the sample slope is outside the limits or the slope difference is bigger than set.

If no "Quality controlled copy no." is calculated for the sample clicking the "Explain" button shows you why this is so (the rule appears above the data table). The parameters for which the reaction failed are highlighted.

When all the checking/editing is done, scroll down and click "Save" button (bottom right) to proceed. This reference gene is now saved in the quantGenius database. Click "Back to Experiment" to return to the Experiment page and add other data.

Conditions - I	reference gene	ecision/Result								
Average Cq										
<= CqExtC	C	filution corrected copy no.								
3) two dilution	on calculation									
	Conditions - reference ge	ene			Decision/Result					
1. block	Dilutions involved/enable	d Cq average		CV Copy number (1 or 2)						
	One of two dilutions i enabled/involved calculation	s in Cq_average < CqLOQ	AND	CV copy number (1. or 2. dilution) < 30	if(all_block_conditions quality_controled_copy_number[dilution] dilution_corrected_copy_no.[dilution] else match_block_2					
2. block	Cq average	slope		slope difference						
	<cqextc< td=""><td>slope > Slope between first and slope < Slope between second</td><td></td><td>< Slope difference</td><td>quality_controled_copy_number[dilution] = dilution corrected copy no.[dilution]</td></cqextc<>	slope > Slope between first and slope < Slope between second		< Slope difference	quality_controled_copy_number[dilution] = dilution corrected copy no.[dilution]					

Figure 11: Decision tree for the reference gene in the case of simple (one dilution; A) or two dilution calculation (B)

6. Adding more reference genes

A) Simple calculation

If you use more than one reference gene in your experiment (highly recommended) follow the steps above to add additional reference genes. When adding additional reference genes the "Check Sample names & dilutions" subpage shows you if the reference data you are adding has the same sample names and dilution counts as the previously added reference genes (Figure 12).

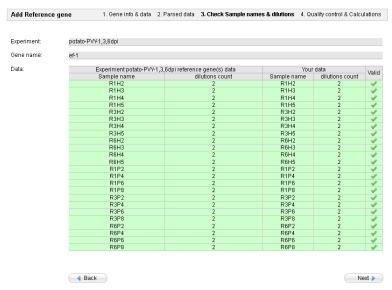


Figure 12: Format checking of the imported data for the subsequent genes

The following procedure is the same as described for the first reference gene in the experiment. When you have several reference genes an average will be calculated from all of them. The calculation can be viewed by clicking on the "Average" link in the reference gene table (Figure 13):

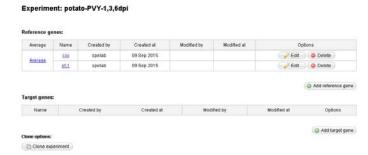


Figure 13: Reference gene data organization

In the Reference gene average page, you can see which reference gene's copy number values have been used for averaging and how the reference copy number was calculated (Figure 14).

Experiment: potato-PVY-1,3,6dpi Scaled cox Reference copy number Sample name 10.6476 10.6476 R3H4 10.6785 10.6785 * 10.9921 / 12.2273 = 9.5997 10.12 R3H5 1000 12.6639 12.6639 R3H5 1000 12.8984 12.8984 * 10.9921 / 12.2273 = 11.5954 12.13 R3P2 1000 10.2516 10.2516 R3P2 1000 15.7585 15.7585 * 10.9921 / 12.2273 = 14.1666 12.21 R3P2 13.913*10.9921/12.2273=12.5075 13.913 12.04 11,5628 11.5628 R3P4 R3P4 12 8096 * 10 9921 / 12 2273 = 11 5156 R3P4 11.9491 11.9491 * 10.9921 / 12.2273 = 10.7419 10.74 R3P6 R3P6 9.1983 9.1983 1000 14.0798 14.0798*10.9921/12.2273=12.6574 10.93 11.9078 11.9078 R3P6 13.5752 13.5752*10.9921/12.2273 = 12.2038 12.06 16.1507 * 10.9921 / 12.2273 = 14.5191 R3P8 11.339 11.339 R3P8 100 16.1507 12.93 7.1634 11.0574 * 10.9921 / 12.2273 = 9.9404 R6H2 7.9286 11.8549 11.8549 * 10.9921 / 12.2273 = 10.6573 9.29 R6H3 11,193 11.193 8.9901 8.9901*10.9921/12.2273 = 8.0819 9.64 R6H4 1000 11.3959 11.3959 R6H4 1000 11.4 R6H5 12.8913 12.8913 12.89 12.0792 12.88 12.8792 Gene Id average ($sum(Quality\ controled\ copy\ no.)$ / $count(Quality\ controled\ copy\ no.)$): Gene: cox average: 10.992103552443 Gene: ef-1 average: 12.227339191571 Reference copy number: Average of Scaled cox, Scaled ef-1,

Figure 14: Reference gene average page

Average reference copy no.: To avoid unequal contribution of each gene's relative copy number value effect to the average (due to different expression rates), the second reference gene is scaled to the average of the first reference gene. The order of the reference gene input might influence the absolute but not the relative expression values. In the cases when the copy numbers are not calculated for one gene due to QC issues, the reference copy number of other gene(s) is used for normalization.

Click on "Back to Experiment" to go back.

7. Adding target genes

To add target genes, go to your experiment's page and click "Add target gene" button (Figure 15).

Experiment: potato-PVY-1,3,6dpi

Figure 15: Adding a target gene

Specify the gene name and input the sample data and standard curve data in the same way as described for the reference gene (see above) for the analysed target gene.

The subpage "Check Sample names & dilutions" shows you if the target gene data you are adding have the same sample names and dilution counts as the reference genes. Click "Next" to proceed.

The subpage "Quality control & Calculations" is used to specify the "Cq at Limit of quantification (CqLOQ)" which is the minimum Cq value that is considered below the limit of quantification for specific target gene.

CqLOQ: The Cq values indicate that the target gene copy numbers are below limit of quantification when the reproducibility of analysis is low (e.g. coefficient of variation between copy numbers calculated from the analysis of the same sample is above 30%) or the formation of primer-dimers was detected already when inspecting results in the original real-time PCR software. Set the CqLOQ for your target gene according to the results of amplification of standard curve and samples included in the analysis.

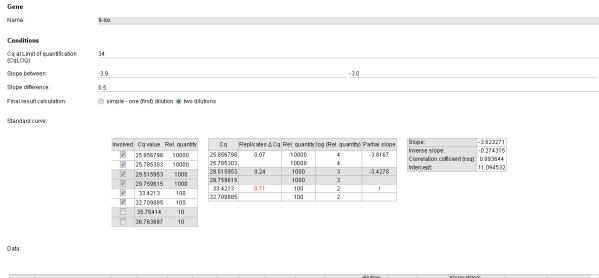
Moreover, you have to set limits for sample slopes (described above in the section Add reference gene) and specify if the analysis is to be done on both/all (if more than 1 dilutions are analysed per sample) or only one (first) dilution.

Simple or two dilution calculation: If your qPCR was performed on only one dilution the software will recognize that from the input data. It is only necessary to select simple – one (first) dilution if qPCR was done for two dilutions, but the second one is out of the quantification range.

8. Reviewing target gene data

After all the conditions are entered the application automatically calculates all parameters of the standard curve, determines quality control parameters for analysis of samples and calculates the target gene copy numbers in all samples. In the standard curve table, you can check the calculated partial slopes.

As for the Reference gene the data that are out of the preset boundaries is highlighted to assess the data quality and help with manual corrections (Figure 16).


Standard curve:

- Replicates ΔCq > 0.5,
- Slope out in the predefined range ("Slope between")
- Correlation coefficient < 0.98

Data

- Average Cq Value > CqLOQ
- Replicates ΔCq > 0.5,
- Slope out in the predefined range ("Slope between")
- Slope difference > predefined Slope difference
- CV copy number > 30

You can check the results; and at this stage omit the individual wells (pipetting errors and standard curve dilutions outside the quantification range) by unchecking the box of the reaction row (Figure 16).

Involved	Sample name	Cq value	Average Cq value	Replicates ΔCq	Rel. quantity	log (Rel. quantity)	Slope	Slope difference	Calculated copy no.	CV copy no.	Average copy no.	dilution corrected copy no.	CV dilutions	Reference copy no.	Normalized target copy no.	Final result	CV Normalized target copy no.	Warning
V	R6H4	31.422644	31.4326	0.02	1000	3	- 1	- 1	298.42	0.89	296.55	296.55	1	11.4	26.02	26.023	1	
V	R6H4	31.442528			1000	3			294.69									
	R6H4	34.400864	- 1	- 1	100	2			- 1	1	- 1	- 1		- 1	I			
	R6H4	34.40014			100	2			I									
V	R6H5	31.705362	31.5718	0.27	1000	3	- 1	I	249.61	11.9	272.55	272.55	- 1	12.89	21.14	21.142	I	
V	R6H5	31.438267			1000	3			295.49									
	R6H5	35.749126	- 1	- 1	100	2			1	I	- 1	1		1	1			
	R6H5	35.513893			100	2			1									
V	R1P2	29.668667	29.6361	0.07	1000	3	-4.0085	0.39	903.58	2.91	922.54	922.54	16.15	10.09	91.45	- 1	13.53	QC target failed
V	R1P2	29.60356			1000	3			941.51									
V	R1P2	33.622738	33.6446	0.04	100	2			74.35	1.95	73.34	733.41		9.72	75.47			
V	R1P2	33.666462			100	2			72.33									
V	R1P4	32.580673	32.7885	0.42	1000	3	- 1	- 1	143.6	18.46	127.02	127.02	1	8.16	15.57	15.573	1	
172	D4D4	00 00005			4000				440.45									

Figure 16: Definition of QC parameters and implementation of QC modifications for a taget gene: For this assay the last dilution of the standard curve was excluded. The limit of quantification was set to 34 and allowed efficiency limit was set to -3.9. For the samples that had even worse efficiencies, the final result was not calculated. For the samples with Cq values above CqLOQ in the second dilution, the Final result was calculated only from the first dilution.

The rules for calculating the Final Result (which is quality controlled and normalized relative copy number of the target gene of the sample), can be observed by clicking on the "Final result" column header (see also explanation and Figure 17 below). Any possible warnings regarding performed modifications are written in the Warning column.

The following **QC check and modifications** are performed for the target gene copy number calculation (see figure 17 for details):

In simple calculation, the only thing that can be checked is whether the sample is under the LOD (missing values) or LOQ (determined by set LOQ or high replicates coefficient of variation), the final result is modified (LOQ copy number divided by 2 and normalized to the average reference gene copy no. overall samples included in the experiment)

In two (or many) dilution calculation it is first determined whether the sample Cq is

- Under LOD (missing or undetermined): LOQ copy number divided by 10 and normalized to the average reference gene copy no. (Note: here we could assign value 0 to our sample results. Due to potential further analytical steps it is preferably to instead assign (impute) a very small number as a measured relative copy number. Be careful in qualitative qPCR experiments (+/-) eg. virus, transgene etc.)
- Both dilutions under LOQ: LOQ copy number divided by 2 and normalized to the average reference gene copy no.)
- Second dilution Under LOQ: calculated from the first dilution only

If both dilutions above LOQ

- if replicate CV is higher than 30 in 2^{nd} dilution): calculate the final result from the 1^{st} dilution (Note: correct pipetting errors only above LOQ)
- Final results is only calculated if the slope and slope range are within the pre-set limits.

Possible warnings:

- **QC ref failed**: bad results for reference gene, final result is not calculated
- **Under LOQ**: Cq in both dilutions above set LOQ (final result calculated as LOQ copy number divided by 2 and normalized to the average reference gene copy no.)
- **Under LOD:** no result in all of the analysed wells (final result calculated as LOQ copy number divided by 2 and normalized to the average reference gene copy no.)
- QC target failed: sample efficiency estimate out of set range, final result is not calculated

When all the checking/editing is done scroll down and click "Save" button (bottom right) to proceed.

A) simple calculation, one dilution

Block no.	Conditions - ta	arget ger	ne	Decision/Result					
1. block	if(count(Cq = Failed) == cou		npty or Undetermined or	<pre>if(all_block_conditions) final_result = LOQ_copies / 10 / average_reference_copy_no., warning "Under LOD" else match_block_2</pre>					
	(first) Cq (first) CV copy number average		(first) CV copy number						
2. block	> CqLOQ OR > 30		> 30	if(all_block_conditions) final_result = LOQ copies / 2 / average_reference_copy_no., warning "Under LOQ else final_result = Normalized target copy no.					

B) two-dilution calculation

Block no.	Conditions - target gene	Decision
1. block	<pre>if(second_Cq_average > CqLOQ) OR count(second_dilution_Cqs = 0 or empty or undetermined or failed) == count(second_dilution_Cqs)</pre>	if(all_block_conditions) match simple calculation (remove second dilution from calculation)
2. block	if(count(Cq = 0 or empty or Undetermined or Failed) == count(Cq))	<pre>if(all_block_conditions) final_result = LOQ_copies / 10 / average_reference_copy_no., warning "Under LOD"</pre>

	Dilutions enabled	Cq average (dil. 1 or 2)		CV copy number (dil. 1 or 2)	Decision
3. block	One dilution is enabled	< CqLOQ	AND	< 30	<pre>if(all_block_conditions)</pre>

Block no.	1st dil CV copy No.		slope		Slope difference		2nd dil CV copy No.	Decision
4. block	> 30 OR first _Cq_average > CqLOQ	AND	any	AND	any	AND	any	if(all_block_conditions) final_result = LOQ copies / 2 / average_reference_copy_no. , warning "Under LOQ" else match_block_5
5. block	any	AND	any	AND	any	AND	> 30 OR not calculated OR second_Cq_average > CqLOQ	if(all_block_conditions) final_result = Normalized target copy no. 1 else match_block_6
6. block	<= 30 OR not calculated	AND	slope between first < x < slope between second	AND	< slope difference	AND	< 30 OR not calculated	if(all_block_conditions) final_result = average(Normalized target copy no. 1, 2) else final_result = /, warning "QC target failed"

Figure 17: Decision tree for the target gene in the case of simple (one dilution; A) or two dilution calculation (B)

9. Editing and deleting experiments/genes

In the Experiments view, experiments can be sorted by name, creation and modification dates. Individual experiments can be renamed and deleted by clicking on "Rename" and "Delete" buttons (Figure 18). You can edit the experiment by clicking on its name. In the INTERNAL version, the users can view all the experiments that were created within the NIB network, but can only modify their own experiments. Use the "clone" option (explained below) to reanalyse someone else's data.

Experiments « Previous 1 2 3 4 5 6 7 8 ... 14 15 Next » Name ** Created by ** Created at ** Modified by ** Modified at ** Options Robot hamilton test1 first robot samples katjas 27 May 2016 katjas 27 May 2016 Robot hamilton test1 katias 27 May 2016 katjas 27 May 2016 lcm cvetovi drugic 15 vzorcev markoc 26 May 2016 markoc 26 May 2016 09 May 2016 Rename Delete lesions early copy firstdil spelab 09 May 2016 spelab lesions early spelab 09 May 2016 spelab 26 May 2016 Rename Delete icm mcp tomato markoc 04 May 2016 markoc 04 May 2016 Hormonal treatment chip9 KS katjas 26 Apr 2016 katjas 20 May 2016 21 Apr 2016 21 Apr 2016 mcp cvetovi lcm markoc markoc 19 May 2016 Hormonal treatment chip8 KS 20 Apr 2016 katjas katjas Rename Delete 19 Apr 2016 19 Apr 2016 GMO proficiency spelab. spelab 30 Mar 2016 Igor Wounding OS manipulacija strogo spelab spelab 30 Mar 2016 Rename Delete 16 Mar 2016 16 Mar 2016 majak majak 16 Mar 2016 16 Mar 2016 majak testi majak Igor Wounding OS manipulacija 15 Mar 2016 PRename Delete spelab 15 Mar 2016

29 Feb 2016

Figure 18: Experiment management

Hormonal Treatments chip8

The whole experiment can be cloned (useful when you want to analyse the same data using different conditions) by clicking on the "Clone experiment" button. Moreover, you can delete individual genes or add new ones and you can modify the analysis parameters by clicking on "Edit" button" (Figure 19).

annaco

29 Feb 2016

Add experiment

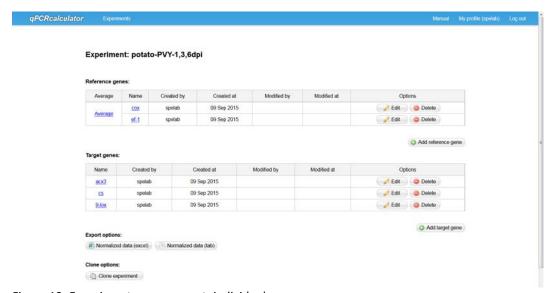


Figure 19: Experiment management: individual genes

10. Export analysis

You can export the calculation table of the individual gene as Excel file by clicking on the gene name and then clicking "Export to Excel" button on the bottom right of the page Figure 20).

Figure 20: Individual gene export

Final result data for all the target genes in the experiment (taking into account QC parameters and normalized to average reference gene) can be exported from the Experiment view (Figure 19) in .txt or .xls formats. In the .txt file only data matrix is exported. In the .xls file two sheets are created, one containing the same data as in .txt file and the other containing any possible warnings regarding the values (see chapter 8)

1				1			
2	Experiment name:	zebrafish_liver_trea	tment	2	Experiment nam	e: zebrafish_liver_tre	atment
3				3			
4				4			
5		Target gene name		5		Target gene name	
6	Sample name	vtg1	hsd17b3	6	Sample name	vtg1	hsd17b3
7	1	64.35	817.31	7	1	64.35	817.31
8	2	94.58	5.22	8	2	94.58	5.22
9	3	494087.83	5.89	9	3	494087.83	5.89
10	4	62.35	2173.49	10	4	62.35	2173.49
11	5	19.43	/	11	5	19.43	QC target failed
12	6	56.21	6.95	12	6	56.21	6.95
13	7	709534.9	2.71	13	7	709534.9	2.71
14	8	944223:4	0.38	14	8	944223.4	Under LOQ
15	9	410784.12	6.07	15	9	410784.12	6.07
16	10	172.06	747.65	16	10	172.06	747.65
17	11	346.17	1305.46	17	11	346.17	1305.46
18	12	/	0.08	18	12	QC ref. 1 failed	Under LOD
19	13	/	13.71	19	13	QC target failed	13.71
20	14	/	3.55	20	14	QC target failed	3.55
21	15	693201.17	17.75	21	15	693201.17	17.75
22	16	41.62	882.65	22	16	41.62	882.65
23	17	/	0.08	23	17	QC ref. 1 failed	Under LOD
24	18	42.48	246.12	24	18	42.48	246.12
25	19	369796.96	5.55	25	19	369796.96	5.55
26	20	247320.68	5.12	26	20	247320.68	5.12
27	21	/	65.14	27	21	QC target failed	65.14
28	22	26.93	4.5	28	22	26.93	4.5
29	23	/	96.47	29	23	QC target failed	96.47
30	24	174.99	2117.96	30	24	174.99	2117.96
31	25	/	19.37	31	25	QC target failed	19.37
32	26	888934.6	11.36	32	26	888934.6	11.36
33	27	607206.83	10.45	33	27	607206.83	10.45
4			rafish_liver_tre (+)	4 >	zebrafish_liver_t		rafish_liver_tre (+)
READY				READY			

Figure 21: Comparison of two versions of the exported nomalized data tables: left – with imputed values and without Warnings, right: without imputed values, including QC warnings

